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Quantum numbers

➢ Schrodinger’s Equation (1D) on applying boundary condition gives a quantum number

➢ Schrodinger’s Equation (3D) on applying boundary condition gives three quantum numbers.

➢ These quantum numbers come out of the theory rather than being put into the theory as Bohr did.

➢ From Chemistry, four quantum numbers were required, instead of the three that the Schrodinger’s Equation predicts.

➢ The fourth quantum number (spin) can be predicted from a relativistic quantum theory, where the equation is called the 

Dirac Equation.

➢ In the hydrogen atom spherical coordinates (r,,) is used instead of cartesian (x,y,z).

➢ The solution of the Schrodinger’s equation in spherical coordinates gives us three quantum numbers:  n, l, and ml 

➢ n is related to the r and hence is related to energy, l is related to the -equation and hence  related to angular momentum, 

and ml is related to the  equation and is related to the z-component of angular momentum, which is related to the 

magnetic properties of the state.
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➢ The fourth quantum number, ms is a relativistic quantum phenomenon.  It is related to magnetic behavior, and 

classically related to the electron “spinning”, so that its spinning charge creates a magnetic field.

➢ Thus, one needs three (Why three? 3 dimensions) quantum numbers to define a given wavefunction
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Principal Quantum Number, n

➢ The principal quantum number, n, describes the energy level on which the orbital resides.

➢ Largest E difference is between E levels

➢ The values of n are integers > 0

➢ 1, 2, 3,...n.  

Azimuthal Quantum Number, l

➢ defines shape of the orbital

➢ Allowed values of l are integers ranging from 0 to n-1.

➢ We use letter designations to communicate the different values of l and, therefore, the shapes and 

types of orbitals.

➢ So each of these letters corresponds to a shape of orbital.

Value of l 0 1 2 3

Type of orbital s p d fBapan_Draft



Magnetic Quantum Number, ml

➢ Describes the three-dimensional orientation of the orbital.

➢ Values are integers ranging from -l to l: −l 

Spin Quantum Number, ms

➢ This leads to a fourth quantum number, the spin quantum number ms.

➢ The spin quantum number has only 2 values +1/2 and -1/2

➢ Describes magnetic field vector of electron
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Symmetric & Antisymmetric wave function

How do we extend the quantum theory to systems beyond the hydrogen atom?

➢ For systems of 2 electrons,  depends on time, and on the coordinates of each of the two electrons: (x1,y1,z1,x2,y2,z2,t).

➢ The Schrodinger’s equation has two kinetic energies instead of one.

➢ It turns out that the Schrodinger Equation can again be separated:

    = a(x1,y1,z1)* b(x2,y2,z2)* T(t)

    This is like having electron one in state a, and having electron two in state b.

➢ From the Heisenberg Uncertainty Principle and dual character of matter it is difficult to identify the electrons (which is 

electron 1 and which is electron 2). This means that the wavefunction must also reflect this uncertainty.

➢ There are two ways of making the wavefunction reflect the indistinguishability of the two electrons:

  sym=[a(r1)* b(r2)+ b(r1)* a(r2)]*T(t)  (symmetric)

and anti = [a(r1)* b(r2) - b(r1)* a(r2) ]*T(t)  (antisymmetric). 
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Which (if either) possibility agrees with experiment?

➢ It turns out that some particles are explained nicely by the symmetric, and some are explained by the 

antisymmetric.

➢ Particles that work with the symmetric form are called Bosons and have integer spin.

➢ If particle 1 and particle 2 both have the same state,  > 0.  This means that both particles Can be in the same state 

at the same location at the same time.

➢ Particles that work with the anti-symmetric form are called Fermions and have half-integer spin

➢ If particle 1 and particle 2 both have the same state,  = 0 and so Probability = 0.  This means that both particles 

Cannot be in the same state at the same location at the same time.

➢ Bosons: Photons and alpha particles (2n + 2p) are bosons. These particles can be in the same location with the 

same energy state at the same time. This occurs in a laser beam, where all the photons are at the same energy 

(monochromatic).
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➢ Fermions: Electrons, protons and neutrons are fermions. These particles cannot be in the same location with the same 

energy state at the same time.

➢ This means that two electrons going around the same nucleus cannot both be in the exact same state at the same time!  

This is known as the Pauli Exclusion Principle!

➢ If all the electrons could be in the same state in an atom, then there would be no difference chemically between any of 

the elements!

➢ Thus, the possibility of chemistry is explained by the wave/particle duality of light and matter, and electrons acting as 

fermions!

➢ Two identical neighboring atoms CAN each have an electron in the same state, since those two electrons are NOT in the 

same area of space.

Bapan_Draft



Sequence of Energies levels

➢ The energy of the hydrogenic orbitals is found to depend on n and l

➢ Orbital energies increase as (n + l) increases

➢ If two orbitals possess same (n + l), the one with the smaller n has 

lower energy

➢ For a given energy level (n), Energy: s<p<d<f 

➢ This generalization is valid only for the one electron wave functions 

for each separate orbital

➢ For a multielectron system, effective nuclear charge gets modified (penetration & 

shielding) and energy of an orbital is given by total energy of the atomic system before and 

after addition of electron and requisite nucleons.

➢ Generally, energies of different orbitals drop to different extent with increase in atomic 

number.
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Pauli’s Exclusion Principle (1925)

➢ According to Pauli’s Exclusion Principle, no two electrons in an atom can have identical sets of quantum numbers.

➢ Alternatively, the same set of values for all four quantum numbers cannot be assigned to more than one electron in 

an atom.

➢ No two electrons in the same atom can have exactly the same energy.

➢ No more than two electrons may occupy a single orbital and, if two do occupy a single orbital, then their spins must 

be paired

➢ The principle restricts the maximum number of electrons which may be assigned to a given orbital (s, p, d and f-

orbital can accommodate maximum 2, 6, 10 and 14 electrons respectively)

➢ The exclusion principle, thus helps to write down the electronic configuration of an atom. As soon as the maximum 

capacity of an orbital is reached, the next electron has to be placed in higher energy orbital.
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Aufbau Principle 

➢ Aufbau principle concerns gradual building up of the electron configuration of multielectron atoms starting from 

hydrogen

➢ Rule 1: A system of particles is stable when its total energy is minimum. Accordingly, electrons are assigned to the 

orbitals to give the lowest total energy for the atom. These atomic orbitals are acceptable solution of Schrodinger 

equation.

➢ Rule 2: Only one electron can exist in any particular quantum state in an atom. This follows from Pauli’s exclusion 

principle

➢ Rule 3: The ground state of an atom is one with maximum total spin possible i.e., one having maximum number of 

parallel spins within a subshell  

Bapan_Draft



Hund’s rule of maximum multiplicity

➢ ‘For degenerate orbitals, the lowest energy is attained when the number of electrons with the same spin is maximized.”

➢ The ground state of an atom should contain the maximum number of unpaired electron (within the same subshell) with 

their parallel spin

➢ The most stable configuration of an atom corresponds to maximum spin multiplicity. Multiplicity is given by 2S+1, 

where S is the resultant of all individual spin quantum numbers

wrong correct
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➢ Hund’s rule is a consequence of the energy required for pairing electrons in the same orbital. When two negatively 

charged electrons occupy the same region of space (same orbital) in an atom, they repel each other, with a Coulombic 

energy of repulsion (c) per pair of electrons. As a result, this repulsive force favors electrons in different orbitals 

(different regions of space) over electrons in the same orbitals

➢ In addition, there is an exchange energy (e), which arises from purely quantum mechanical considerations. This 

energy depends on the number of possible exchanges between two electrons with the same energy and the same spin. 

For example, the electron configuration of  C-atom is 1s2 2s2 2p2. The 2p electrons can be placed in the p orbitals in 

three ways:

➢ Each of these corresponds to a state having a particular energy. State (1) involves Coulombic energy of repulsion (c), 

because it is the only one that pairs electrons in the same orbital. The energy of this state is higher than that of the 

other two by (c) as a result of electron-electron repulsion.
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➢ In the second state, there is only one possible way to arrange the electrons to give the same diagram, because there is 

only a single electron in each having + or – spin; these electrons can be distinguished from each other on this basis.

➢ In the third state, the electrons have the same spin and are therefore indistinguishable from each other. Therefore, there 

are two possible ways in which the electrons can be arranged:

➢ Because there are two possible ways in which the electrons in state (3) can be arranged, we can say that there is one pair 

of possible exchanges between these arrangements, described as one exchange of parallel electrons. The energy involved 

in such an exchange of parallel electrons is designated e; each exchange stabilizes (lowers the energy of) an electronic 

state, favoring states with more parallel spins (Hund’s rule). Therefore, state (3), which is stabilized by one exchange of 

parallel electrons, is lower in energy than state (2) by e.
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➢ The results of considering the effects of Coulombic and exchange energies for the p2 configuration may be summarized 

in an energy diagram

➢ State (3) is the most stable; its electrons are in separate orbitals and have parallel spin; because state (3) has one possible 

exchange of electrons with parallel spin, it is lower in energy than state (2) by e. State (1) is highest in energy because 

it has two electrons in the same orbital and is therefore higher in energy than state (2) by c. Neither state (1) nor state 

(2) is stabilized by exchange interactions (zero e ).

➢ c is a consequence of repulsion between electrons in the same orbital; the 

greater the number of such paired electrons, the higher the energy of the 

state.

➢ e is a consequence of parallel electron spins in separate orbitals; the greater 

the number of such parallel spins (greater the number of exchanges), the 

lower the energy of the state.

➢ Both c and e energies must be taken into account when comparing the 

energies of different electronic states.
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When the orbitals are degenerate (have the same energy), both Coulombic and exchange energies favor unpaired 

configurations over paired configurations.
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Electron configurations of the elements

n
_
D
r
a
f
t



➢ Some irregularities occur when there are 

enough electrons to half-fill s and d 

orbitals on a given row.

➢ For instance, the electron configuration for 

Chromium, is [Ar] 4s1 3d5 rather than the 

expected [Ar] 4s2 3d4.

➢ This occurs because the 4s and 3d orbitals 

are very close in energy.

➢ These anomalies occur in f-block atoms, as 

well. 

➢Attributed to special stability of half-filled 

subshells.
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